
The World of Music: User Ratings; Spectral and

Spherical Embeddings; Map Projections.

David Gleich∗

Stanford

Matthew Rasmussen
MIT

Kevin Lang
Yahoo! Research

Leonid Zhukov
Yahoo! Inc.

July 24, 2006

Abstract

In this paper we present an algorithm for layout and visualization of music collec-
tions based on similarities between musical artists. The core of the algorithm consists
of a non-linear low dimensional embedding of a similarity graph constrained to the
surface of a hyper-sphere. This approach effectively uses additional dimensions in the
embedding. We derive the algorithm using a simple energy minimization procedure
and show the relationships to several well known eigenvector based methods.

We also describe a method for constructing a similarity graph from user ratings,
as well as procedures for mapping the layout from the hyper-sphere to a 2d display.
We demonstrate our techniques on Yahoo! Music user ratings data and a MusicMatch
artist similarity graph.

Figure 1: A partial spherical embedding of the MusicMatch similarity graph.
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1 Introduction

Online music services such as Yahoo! Music, MusicMatch, last.fm, and Rhapsody allow
service providers to collect an enormous amount of data about the musical tastes of their
users. In this paper, we address the question of how to use these datasets to understand and
visualize the world of music created by users. We do not use any data besides user ratings or
metrics derived from user ratings. The goal of this research is purely exploratory. We seek
to determine what, if anything, we learn by creating a visual representation of this world.

At a high level, our approach is to view the set of music ratings as a bipartite graph
between users and artists. From this graph, we induce a similarity graph between artists,
often employing some heuristics to ensure high data quality. To visualize the relationships
between music artists, we compute an embedding of the similarity graph and draw the graph
as a point cloud along with a subset of largely transparent edges.

This approach is what we used to create figures 1 and 2. In the title picture, we computed
a spherical embedding of the MusicMatch dataset introduced below. Each set of similarly
colored points represents a set of similar musical artists. The second picture presents a
labeled “map” of the LAUNCHcast dataset. Our approach outlined above follows other
ideas in dimensionality reduction and data embedding [11, 12, 2]. Although the process
combines existing ideas in a straightforward manner, it yields consistent and interesting
results on two datasets derived from music. This paper extends the results in [6] by greatly
expanding the exposition of the techniques used and demonstrating results for a second
dataset.

This paper proceeds as follows. Section 2 briefly describes the two datasets we use. These
datasets both come from Yahoo!’s music services. Section 3 details our data processing
methodology. In short, we process the data, compute a derived graph, embed the graph
onto a sphere (section 4), unroll the spherical data (section 5), and display. The remainder
of the sections describe our implementation and results.

2 Data

For our results, we use two datasets. The first dataset is from Yahoo! Music’s LAUNCHcast
radio service and consists of user ratings. The second dataset is a set of artist similarity
scores from Yahoo!’s MusicMatch service.

LAUNCHcast The LAUNCHcast data used in this paper consists of all the ratings made
by users on the Yahoo! Music service during a 30 day period. The full dataset contains
approximately 250 million ratings on 100,000 artists from 4 million users. The ratings are on
a scale from 1 (dislike) to 100 (like). The LAUNCHcast dataset has a power-law distribution
in the number of ratings for each musical artist.

MusicMatch In contrast with the LAUNCHcast data, the MusicMatch data only contains
artist similarity scores computed with an unknown metric derived from user ratings. The
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Figure 2: A hand labeled map of the LAUNCHcast data.

Figure 3: Our data processing pipeline.

scores are between 0.00034 and 50.37 and are not symmetric. Higher scores indicate greater
similarity between artists. There are 41,627 artists and 3.4 million similarity scores. The
average similarity score is 5.6. For each artist, we have a set of at most 100 similarity scores.

3 Data Pipeline and Filtering

The previous section described the raw datasets. In this section, we describe how we con-
verted those datasets into weighted adjacency matrices for input to the graph embedding
algorithms discussed next.

Figure 3 visually displays our data pipeline. There are two entry points, the top left and
top right. The LAUNCHcast dataset follows the upper-left pathway and the MusicMatch
data is a weighted graph entering on the right.

LAUNCHcast Processing Although we were given approximately 250,000,000 ratings
in the LAUNCHcast dataset, our first step was to filter the data. Because our eventual goal
was a similarity graph between artists, we wanted to eliminate unnecessary data. Toward
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that end, we removed all ratings below the numeric value of 75. The intuition behind this
choice was that low ratings are not reliable between users, but that high ratings are reliable;
that is, people reliably know when they love a musical artist, but make less useful ratings
on artists they are less enthusiastic about.

Following the filtering step, we further wanted a set of artists and users that have many
ratings. To accomplish this goal, we removed all artists and users with less than 100 ratings.
Afterward, the dataset had 9,276 artists, 140,691 users and 25,466,113 ratings.

To convert from the filtered data to a similarity matrix between artists, we used a cosine
similarity metric. To compute the cosine distance between two artists, we view each artist
as a vector in the space of users and compute the cosine of the angle between the artists.
Figure 4 presents a visual depiction of this metric. More rigorously, artist i is the point,
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There are two properties of the cosine metric we use. First, the metric is symmetric, cos θij =
cos θji. Second, assuming that ui

k ≥ 0 for all i, k, then 0 ≤ cos θij ≤ 1.
We build a sparsified cosine similarity graph in the following manner. The artists cor-

respond to graph nodes and edges are established by the following procedure: we connect
nodes i and j in this graph if j was one of the top N similar artists to i or i was one of the
top N similar artists to j, where similarity is defined as cos θij. The weight on the edge is
the cosine similarity score. Without the restriction on the top N artists, the resulting graph
will be dense with almost all edges. Thus, we term this the sparsified similarity graph.

While cosine is symmetric, the relationship “top N closest using cosine” is not symmetric.
The above procedure explicitly symmetrizes the graph using an “or” operation. Thus, an
artist may have degree larger than N in this similarity graph. We choose N = 20.

The result is a weighted similarity graph between the 9,276 artists. After the sparsification
described above, the graph contained 150,292 weighted edges and is connected.

In summary, to process the LAUNCHcast data, we

1. remove low ratings (below 75),

2. remove artists and users with insufficient ratings (less than 100), and

3. compute the sparsified cosine similarity matrix.

Note that we did not do any parameter tuning on these parameter choices. We selected these
numbers before seeing any results.

MusicMatch Processing In contrast with the LAUNCHcast data, for the MusicMatch
data, we were already given a set of similarities between artists. In this section, we describe
how we converted the provided data into a similarity graph.
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Figure 4: Visual depiction of cosine similarity. We set the similarity between
“Peter, Paul, and Mary” and “Simon and Garfunkel” as cos(θ), where θ is the
angle between the vector describing the artists represented in the space of users.

Recall that for each artist, the data listed as many as 100 similar artists. We interpret
this data as a directed weighted graph. As in the LAUNCHcast data we remove all but
the top 20 highest weighted links between artists. Following this step, there were 802,826
edges left in the graph. Next, we normalized edge weights to the range [0, 1] by dividing
by the largest similarity score. This action was done globally and not for each artist. The
intuition behind normalizing the scores to a maximum of 1 is two-fold. First, normalizing
to the range [0, 1] gets us “closer” to a cosine-like metric. Second, the numerical algorithms
used to embed the resulting graph often exhibit the best precision when the largest floating
point number is 1.

The next step is somewhat unintuitive. We remove all weighted edges with weight less
than the global mean ranking. After normalization from the previous step, the mean for
the MusicMatch data with 802,826 edges was 0.146. This operation reduced the number of
edges to 282,907. An intuition for this step follows from the next processing step, which is
to remove the direction on each edge. Specifically, we replace each directed edge with an
undirected edge weighted with the maximum weight of either directed edge (the weight of a
non-existent directed edge is 0). This step yields 240,648 undirected edges.

Returning briefly to the step where we remove weighted edges below the mean, recall that
the unknown similarity metric between artists was not symmetric. Because we eventually
consider only one of two possible similarity scores, we wish to consider only the strongest
data. In some sense, this step is equivalent with dropping all ratings below 75 for the
LAUNCHcast data.

The final processing step on the MusicMatch data is to compute the largest strongly
connected component of the weighted graph. The largest component has 24,057 artists and
239,984 undirected edges.

To recap, processing the MusicMatch data involved:

1. removing all but the top 20 weighted edges,

2. normalizing weighted edges to the range [0, 1],

3. removing low weighted edges (below the mean score),
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Symb. Meaning

A the weighted adjacency matrix
δij the Kronecker delta
e a column vector of ones
E set of edges

(i, j) an edge between vertex i and j
L the Laplacian matrix
n the number of vertices
U layout energy
V set of vertices
xi the position of vertex i embedded in R

1

Xik the kth coordinate of vertex i embedded in R
d

wij weight on edge (i, j)

Table 1: The notation used in this paper.

4. symmetrizing each edge by taking the maximum weight of each directed edge, and

5. computing the largest connected component of the resulting graph.

Unlike the LAUNCHcast data, we did do some parameter tuning to determine what
cut-off parameter to use in step 3. Other parameters (including removing step 3) yielded
subjectively worse results. In actuality, knowledge of the underlying similarity metric or raw
rankings would allow us to further tune this processing.

4 Graph Embeddings

Given a weighted undirected graph G = (V, E, w), one way to visualize this graph is to assign
coordinates to every node. This process is called embedding the graph. We want a set of
low-dimensional coordinates that illuminate internal properties of the data. In particular,
for our data we would like “similar” artists to be placed “nearby” each other in embedding.
This problem is common and many solutions exist [12, 2, 11]. As we will show, our solutions
are related to the previous work, but we prefer an alternative derivation to highlight the
assumptions implicit in the optimization problem.

To describe our embeddings, we first write both a single and multi-dimensional quadratic
energy function and then discuss the problems with this function. The next two sub-sections
describe two different “fixes” for these problems. Finally, we provide a section with explicit
formulas for the resulting optimization problems in three-dimensions to make our ideas
concrete.

This section is greatly expanded in the Appendix, where we discuss motivation for these
embeddings. Also, we further elaborate on alternatives to the embeddings which yield poor
results.
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4.1 One-Dimensional Quadratic Energy

One possibility to embed the graph is a weighted quadratic term over the edges of the graph.
Intuitively, this idea gives rise to a quadratic “energy” that “attracts” nodes connected with
edges. If we restrict ourselves to a one-dimensional embedding and label all the vertices with
integers from 1 to n, we have a coordinate xi ∈ R

1 for each vertex i ∈ V . For convenience,
we represent the set of all coordinates in a length n vector x. Given an embedding x, then
the “energy” of the embedding is

U(x) =
∑

(i,j)∈E

wij(xi − xj)
2 = (1/2)

∑

ij

Aij(xi − xj)
2

=
∑

ij

Lijxixj,
(1)

where A is the weighted symmetric adjacency matrix (Aij = Aji = wij) and L is the Laplacian
matrix,

Lij = δij

∑

k

Aik − Aij.

In matrix notation, we have that

L = Diag(Ae) − A and U(x) = xT Lx,

where e is the vector of all ones.
Although the quadratic energy function has significant problems that we will address

soon, we first wish to write the multi-dimensional generalization. Let Xik be the kth coor-
dinate of the embedding of vertex i into R

d and let X represent the n × d matrix of all the
coordinates. The quadratic energy of embedding X is

U(X) =
∑

(i,j)∈E

d
∑

k=1

(Xik − Xjk)
2 =

∑

ij

d
∑

k=1

LijXikXjk

= trace(XT LX).

(2)

To discuss the problems with these embeddings, we return to one-dimensional embeddings
for simplicity. The problems we describe remain for the multi-dimensional function as well.

Ideally, we would like to embed a graph by minimizing U(x), that is, embed the graph
with x∗ where

x∗ = argminx U(x).

However, this optimization problem has a simple minimizer, x∗

i = 0. Needless to say, the
embedding of a graph to a single point is not good.

The function U has two properties that cause this behavior. First, the minimizer of U
is not unique. If x is a minimizer of U(x), then for any scalar γ, x + γ is also a minimizer.
Second, for any scalar γ < 1, then U(γx) = γU(x) < U(x). By the second property, xi = 0
for all i is a minimizer and therefore xi = γ for any scalar is also a minimum.
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Two solution to these problems which lead to better graph embedding are discussed in
the next two sections. The key idea in each solution is to add a set of constraints to the
optimization problem to restrict the possible solutions x∗.

4.2 Spectral Embedding

One set of constraints that yields a non-trivial solution results in the following optimization
problem

min
X

U(X)

s.t.
∑

i Xik = 0 for 1 ≤ k ≤ d
∑

i XikXil = nδkl for 1 ≤ k ≤ l ≤ d.

(3)

In matrix notation, we have
min

X
trace(XT LX)

s.t. XT e = 0
XT X = nId,

where Id is the d × d identity matrix.
We interpret these constraints as follows. The constraint

∑

i Xik = 0 fixes the center of
the resulting embedding at the origin. In light of the problems discussed at the end of the
previous section, this constraint removes the problem of finding non-unique minimizers by
adding scalars. Next, taking k = l the constraint

∑

i X
2
ik = n fixes Xik 6= 0 for at least one

vertex i in each coordinate k and prevents the minimizer from collapsing to the origin.
When k 6= l, the constraint

∑

i XikXil = 0 enforces orthogonality. The implication of this
constraint is that the resulting embedding must use all d dimensions available. To understand
why this aspect is important, notice that the objective function, equation (2), is independent
between dimensions. This constraint correlates the solution X between dimensions. However
this constraint also implies that the solution in dimension k + 1 has a higher energy than
dimension k.

In fact, the solution to equation (3) is known analytically. The minimizing matrix X
is composed of the eigenvectors of L corresponding to the second through d + 1th smallest
eigenvalues. In fact, in one-dimension, the solution of this optimization problem gives the
Fiedler vector of the graph [5]. In higher dimensions, this embedding is well studied under
many different names [2].

4.3 Spherical Embedding

Another set of constraints that yields a non-trivial embedding gives the optimization problem

min
X

U(X)

s.t.
∑

i Xik = 0 for 1 ≤ k ≤ d
∑d

k=1 X2
ik = 1 for 1 ≤ i ≤ n.

(4)
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In matrix notation, the problem is

min
X

trace(XT LX)

s.t. XT e = 0
diag(XXT ) = e.

As in the previous problem, the constraint
∑

i Xik = 0 implies that the center of the

embedding is at the origin. The constraint,
∑d

k=1 X2
ik = 1, however, fixes each point on

the surface of a d-dimensional hyper-sphere. A result of this constraint is that the resulting
embedding cannot collapse to the origin.

The cost of this second constraint is that there is no longer an analytical solution to the
embedding problem. Instead, we must employ non-linear numerical optimization procedures
to compute the embedding X that minimizes equation (4). A second consequence of this
constraint is that the embedding problem is intractable in one-dimension. The surface of a
one-dimensional hyper-sphere is simply the set of points {1,−1}. Thus, in one-dimension,
this constraint yields an integer optimization problem.

The earliest reference (of which we are aware) to the idea of spherical mapping is from
Antonio and Metzger in their work on mapping processes to a hypercube multi-processor
configuration [1]. Further, this same optimization problem results from examining low-rank
solutions to the semi-definite program (SDP) in Goemans and Williamson’s approximation
algorithm for the minimum bisection problem [4, 7]. Recently, others have used SDP methods
for low-dimensional embeddings [14].

4.4 Embeddings in Three-Dimensions

In the previous sections, we wrote the optimization problems for each of the embeddings
for an arbitrarily high dimension. While this approach illuminates some of the analytical
relationships between the method, it may hide some details. In this section, we restrict
ourselves to three-dimensions and explicitly write the optimization programs.

For this section, let xi, yi and zi represent the first, second, and third coordinates of the
embedding point for vertex i. The spectral embedding optimization problem is

min
x,y,z

∑

ij Lijxixj + Lijyiyj +
∑

ij Lijzizj

s.t.
∑

i xi = 0
∑

i yi = 0
∑

i zi = 0
∑

i x
2
i = n

∑

i y
2
i = n

∑

i z
2
i = n

∑

i xiyi = 0
∑

i xizi = 0
∑

i yizi = 0.

(5)

As previously mentioned, the solution to this optimization problem is to set x, y and z to
be the eigenvector corresponding to the second, third, and fourth smallest eigenvalues of L,
respectively.

The spherical embedding problem in 3d is

min
x,y,z

∑

ij Lijxixj + Lijyiyj +
∑

ij Lijzizj

s.t.
∑

i xi = 0
∑

i yi = 0
∑

i zi = 0
x2

i + y2
i + z2

i = 1 for all i.

(6)
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(a) Geodesic Grid

(b) Robinson (c) Sinusoidal (d) Equidistant Azimuthal

Figure 5: In this figure, we plot a series of different map projections. We begin
with a simple geodesic (latitude/longitude) layout. Figures (b)-(d) show three
different projects each preserving some visual aspect of the geodesic lines. Figure
(b) actually draws a slight perturbation of the geodesic grid to better represent
the behavior of the projection near the hemisphere edges.

The solution of this problem is a set of coordinates on the unit sphere. Also, to reiterate,
there is no known analytical solution to this problem and it must be solved by a numerical
optimization routine.

5 Map Projections

At the end of the last section, we determined two methods to embed the graph. Jumping
ahead to the results, the most useful embedding is the spherical embedding. In order to use
the spherical projections to compute a two-dimensional layout, however, we must compute
planar points from locations on the surface of the sphere.

This problem has been studied for over 2,000 years under a different name: drawing a
map [13, 3]. The map drawing community produced a plethora of techniques to draw the
Earth on a flat map. The large number of techniques exists because there is no perfect
map drawing. Loosely speaking, the three types of distortion are area, length, and angles.
An area preserving map is called an equal area projection, a length preserving map is an
equidistant projection, and an angle preserving map is a conformal projection.
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After surveying a large number of map projections using Matlab’s Mapping Toolbox [10],
we decided to investigate three projections, Robinson, sinusoidal, and equidistant azimuthal.
Figure 5 displays the result of each of these projections on the geodesic grid. We report on
some properties of each projection below. None of the projections we choose are conformal.
For our application, this property is not important.

Robinson The Robinson projection preserves no property. It distorts area, length, and
angles. Instead of a mathematical formula, the Robinson projection is a set of heuristics
to construct an appealing map drawing. The National Geographic Society has used the
Robinson projection since 1988 for its world map [3].

Sinusoidal The sinusoidal projection, also known as the Sanson-Flamsteed projection, is
an equal area projection. At the poles, the projection collapses to a point.

Equidistant Azimuthal The equidistant azimuthal projection is an equidistant projec-
tion. The projection unrolls the near hemisphere into a circle such that distances are pre-
served near the center of the projection. The far hemisphere is highly distorted.

6 Implementation

We used a combination of off-the-shelf and custom software in this project. The implemen-
tation is divided into many scripts that accomplish one part of the data processing pipeline.
This approach allowed us the flexibility of choosing different languages for many of the dif-
ferent steps. Largely speaking, the implementation nicely divides between preprocessing,
embedding, and visualization. Our implementation and processing scale to datasets with
millions of artists.1

Preprocessing Our preprocessing scripts were written in Matlab, Perl, and C++. We first
used custom Perl scripts to convert the raw datafiles provided by Yahoo!’s music services into
a sparse matrix representation. For the LAUNCHcast data, we performed the filtering and
similarity graph construction using two C++ programs. The program to build the similarity
graph used the routine CLUTO_V_GetGraph from CLUTO [8]. Preprocessing the MusicMatch
data was done entirely in Matlab.

Embedding To compute the spectral embeddings, we used the eigs routine in Matlab.
For the spherical embedding, we took advantage of the relationship with a low-rank semi-
definite program and used the SDP-LR software to compute these embeddings [4]. To unroll
the spherical embedding into a planar set of points, we used the routines eqdazim, sinusoid,

1While the computation and visualization tools scale to this level, their utility for such a large dataset be-
comes questionable. For a dataset with one million points, the points are almost completely dense throughout
the sphere and we tend to observe less interesting clustering behavior.
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and robinson from the Matlab Mapping Toolbox [10]. We manually picked the center of
each projection.

Visualization tools We used two custom built visualization tools for this experiment:
plot3d, and visgraph. We have used both programs on graphs with over 100,000 vertices and
one million edges.

First, we use plot3d to investigate the structure of the three-dimensional spectral and
spherical embeddings. The plot3d program takes an edge list and a set of coordinates as
input, and optionally, a clustering partition for coloring the nodes. It is a C++ program
that uses OpenGL to draw each node and each edge. Users interactively rotate and zoom
the embeddings of the graph to gain a perspective on the embedding quality. It includes
special code for the spherical embedding to draw a reference sphere at the center.

Once we determine that an embedding is worth pursing, we unroll the three-dimensional
spherical points into two dimensions and use the visgraph program to interactively browse a
two-dimensional graph layout. Like plot3d, visgraph takes similar input, but can also accept
a set of labels for each node in the graph. The nodes (points) and the edges (lines) are
alpha-blended to show local density. The program maintains a quad-tree data structure to
allow fast label browsing using a circular “brushing cursor” to reveal labels. This technique
avoids cluttering the display with all labels simultaneously. Figure 8 demonstrates examples
of the visualizations from visgraph.

Publication Tools For publication images, we use a set of perl scripts to convert raw
embedding data into POVRAY files for further rendering. Also, the visgraph program has
an option to save the current drawing as an SVG file. Both POVRAY and SVG files are
resolution independent formats which make them ideal for generating high quality still images
of the datasets.

7 Results and Discussion

Figure 9-13 present the main results of the paper. In figures 9 and 10, we compare the
embeddings computed by equation (6) and equation (5), respectively. Figures 12 and 13
show the LAUNCHcast and MusicMatch datasets for each of the map projections described
in section 5. Throughout the rest of this section, we will use these figures to argue that
the spherical embeddings are superior to the spectral embeddings, and that the Robinson
projection yields the “best-looking” map projection for our data.

First, the two spherical embedding figures show each of the artists represented as a single
point on the surface of the sphere. The color of each point identifies the cluster an artist
belongs to from an independent clustering of each similarity graph using CLUTO [8]. The
spherical embeddings show a nice grouping of points of similar color, which indicates that
the coordinates for the points largely agree with the clustering. Thus, these embeddings
are successful and we are representing “similar” artists “nearby” each other. In the two
spectral embedding figures, the results are less clear. Here, we have drawn the artists using
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the same colors. While the LAUNCHcast spectral embedding shows a reasonable separation
between groups of artists, the MusicMatch spectral embedding yields one large heterogeneous
“clump” of artists. In fact, for both LAUNCHcast and MusicMatch, the spherical embedding
displays a larger number of small dense “clusters” of artists than the spectral embeddings.
The failure of the eigenvectors of the Laplacian to yield a good embedding may be related
to the power-law structure in the data as was observed by Lang [9].

We have omitted the comparisons in two-dimensions due to space constraints because
the results are uniformly worse for the spectral embedding. Briefly, the LAUNCHcast image
shows only the approximately ± 45 degree “arms” of the clustering. The MusicMatch image
shows a large mess of points at the origin.

We use the CLUTO clustering for two purposes: first, to evaluate the results, and second,
to improve the visualization. CLUTO is a high-quality clustering program with thousands
of successful experiments. In this case we use CLUTO to generate a set of 50 clusters for
each of the similarity graphs.

Next, we will address the map projections. Figures 12 and 13 show each of the map
projections from the display used in visgraph. Each artist is a point colored according to
the artist’s cluster from CLUTO. All edges longer than distance 2 for LAUNCHcast and 3
for MusicMatch are not drawn — many of these long edges would have “wrapped around”
the other side of the sphere. Each edge is drawn with a low alpha-blending value (alpha =
0.025) so “brighter” regions represent higher edge density.

The distortion at the edges in the latitude/ longitude drawing are extreme and visually
unappealing for both graphs. The severe distortion at the edge of the sinusoidal projection is
also unappealing. Both of these projections either expand (latitude/longitude) or compress
(sinusoidal) important groups of points. Subjectively, the Robinson projection looks most
appealing and removes the most severe expansion from the latitude/longitude projection
while maintaining the a nice expansive layout. Finally, the equidistant azimuthal projection
displays the near hemisphere (the center of the picture) with a nice separation, but the far
hemisphere is overly distorted into a circular shape.

8 Exploration

In this section, we describe our explorations of the “World of Music.” All of the visualizations
use the Robinson projection. We do not explain all of the insight we have gained from these
visualizations, only a few succinct points that highlight the utility of the visualization.

LAUNCHCast We have explored the LAUNCHcast data extensively. In this section,
we note three interesting features. First, in the middle of one of the empty areas (“the
oceans”), there is a single artist. Second, there is a strong relationship between “indie”
music and “mainstream” music, belying the independence of “indie” music. Third, there is
a group of “bridge” artists between “mainstream” music and “techno” music.

The artist in the middle of the “ocean” is Austin Powers. Although attributing a cause
to the placement of a particular artist is difficult, we can form some hypotheses. If Austin
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Powers is an artist, then their position in the layout has been affected by the numerous
errant rankings placed on them in reference to Austin Powers, the movie.2 Instead, if Austin
Powers refers to the movie, the position may be influence by the non-standard use of the
movie title as the musical artist name. Either way, it indicates an outlier in the data that
merits further attention.

Second, we plotted the locations of a few well-known “indie” musical artists, The Shins,
Death Cab for Cutie, and The Decemberists, along with the location of more well known
“mainstream” musical artists, U2, Soundgarden, Courtney Love, and Stereophonics. The
visualization shows that the group of “indie” artists forms a tight cluster near the more
extended cluster of mainstream artists. Together, the “indie” and “mainstream” artists
form the region that looks like North America in the center of the Robinson projection.
While alternate specific analysis would have revealed this result, the visualization makes it
immediate.

Finally, the visualization shows a set of “bridge” artists. These artists form a small
cluster between “mainstream” music and “techno” music. Bridge artists, and particularly
a group of bridge artists, are important sets of musical artists because they relate multiple
clusters.3 Again, the visualization immediately highlights this group due to the pattern of
edges entering and existing.

MusicMatch While browsing through the MusicMatch data, we found many interesting
clusters and artists. In this section, we highlight a few of our observations. First, we found
a cluster of Latter Day Saints musicians. Second, we found a few interesting artists that
“connect” various group. Finally, there is a cluster of children’s musicians. See figure 7 for
supporting visualizations from the visgraph tool.

The Latter Day Saints (LDS) cluster is interesting from a few perspectives. Because
of the uniform color of all the artists, CLUTO identified this grouping of artists as well.
However, finding this group by browsing the CLUTO clusters is onerous. We asked CLUTO
for 50 clusters, which it happily provided. Determining the semantics behind these clusters,
however, is beyond CLUTO and requires human intervention. Globally, the LDS cluster
stands out in the visualization due to its unique shape. The shape invites further investiga-
tion. Further, once someone sees the artist “Church of Jesus Christ of Latter Day Saints,”
he or she can easily hypothesize and confirm the nature of the cluster. This process is more
engaging and fulfilling than a brute-force human evaluation of all 50 clusters.

Second, while browsing around the graph, some artists stand out with a “connector”
pattern. Typically, these artists have multiple (3-4) dense sets of edges emanating from a
single point. Visually, these artists break from the regularity of the surrounding region. In
particular, Will Downing is an “connector” artist between soul, R&B, and jazz. Producers
may like such artists because they influence multiple sets of other artists; consumers may
like such artists because they help expand musical tastes.

2Previously, we were under the impression that Austin Powers was indeed an artist unrelated to the
movie. However, recent searches to confirm this fact have not been successful.

3We write more on the importance of connector artists below.
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(a) Austin Powers in the middle of nowhere.

(b) Indie music is closely related to mainstream music.

(c) The bridge from mainstream to techno music.

Figure 6: Some exploration results from the LAUNCHcast dataset.
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Finally, we have highlighted a set of children’s musicians. While the particular artists
are fairly well known and contain little important information, the surrounding region and
the connections are rich with data that should interest musical producers and marketers.
Unfortunately, without expertise in the domain, we cannot evaluate this region ourselves.
However, the visual presentation of the material is key to identifying the possibility of ex-
tracting this data. Without the visual presentation, it would not have occurred to us to seek
more information about children’s musicians and their relationships to the other musicians.

9 Related Work

[Note: this section is incomplete and lacks appropriate references.]
The major contribution of this paper are a more detailed exposition of the techniques

used in [6] as well as demonstrating that the techniques continue to work on another dataset
as well. To reiterate, we view a data exploration problem as a dimensionality reduction and
graph embedding problem. From each of these viewpoints, there exists significant literature.

One of the standard methods for graph embedding is multi-dimensional scaling (MDS).
This method is not as computationally scalable as our approach. In order to make MDS
techniques effective, they must include a repulsive force which includes a computational cost
of n log n (for a fast multipole/quad tree appraoch) or n2 (for an exact computation) per
iteration. Our procedure does not include a repulsive force and has a linear cost per iteration.
Instead, it relies on the constraints of the optimization problem for “sufficient repulsion.”
To be clear, there is no reason to believe the constraints in the hyper-sphere optimization
problem will lead to anything like a repulsive force, but for the music graphs, the final effect
is a nice cluster separation and hence, “sufficient repulsion.”

The MDS approach is strongly related to a force-directed layout. Computed an embed-
ding of the similarity graph using the yEd graph layout tool. As exhibited in figure 11, the
results are inferior to the embeddings computed with our tools.

10 Future Work

There are a few aspects of this project that merit further investigation. First, the layout of the
unrolled maps needs to be hand tuned to determine a good origin and rotation of the sphere.
While conceptually simple, this problem has a strong combinatorial aspect which makes
straightforward optimization techniques difficult. Using a grid search based approach would
be a significant step toward automating this step. Second, the current approach is to project
the points on the surface of the sphere to a two-dimensional plane. A useful alternative may
be to directly visualize the sphere and avoid the projection to two-dimensions. Finally, this
approach works for large datasets (more than 250,000 nodes), but the resulting embeddings
are nearly useless due to the density of points throughout the sphere. To be clear, there
is structure present in the embedding, but a direct visualization seems of limited use. Our
belief is that a two-dimensional space is too restrictive and we need visualization techniques

16



(a) The cluster of Latter Day Saints musicians.

(b) An artist that “connects” a set of clusters

(c) The cluster of children’s musicians.

Figure 7: Some exploration results from the MusicMatch dataset.
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for higher dimensional point sets.

11 Conclusions

In this paper, we built a world of music based on ratings from users. We used two datasets
derived from user ratings to compute a similarity graph between musical artists. To embed
the graph, we examined two embeddings based on quadratic energy functions. Empirically,
we found the spherical embedding to be superior to the spectral embedding. To compute
a set of planar points from the spherical embedding, we considered three map projections,
of which the Robinson was the most appealing. By combining these embeddings with a set
of visualization tools, we developed a system to interactively browse the underlying dataset
and help build an understanding for the world of music.
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(a) LAUNCHcast (b) MusicMatch

Figure 9: Spherical embeddings of the similarity graph from both datasets displayed as point-clouds.

20



(a) LAUNCHcast (b) MusicMatch

Figure 10: Spectral embeddings of the similarity graph from both datasets displayed as point-clouds. These
pictures represent 3d point clouds. For the MusicMatch picture, this figure excludes a few points that were
outside the dense point-cloud near the origin.
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Figure 11: A force directed layout of the LAUNCHcast similarity graph using the
yEd graph editor and layout program. We exported the layout from yEd and used
visgraph to generate the image above. As in the other pictures, the colors come
from the CLUTO clustering. This image shows that the force-directed approach
used in yEd is not able to separate the clusters like the energy-minimization
approach we use.
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(a) Latitude/Longitude (b) Robinson

(c) Sinusoidal (d) Equidistant Azimuthal

Figure 12: Map projections of the LAUNCHcast spherical embedding.
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(a) Latitude/Longitude (b) Robinson

(c) Sinusoidal (d) Equidistant Azimuthal

Figure 13: Map projections of the MusicMatch spherical embedding.
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A Quadratic Energy Embeddings

As we stated in section 4, one way to visualize an undirected graph G = (V, E, w) is to assign
coordinates to every node. This process is called embedding the graph. Ideally, we want a
set of low-dimensional (ideally two-dimensional) coordinates with properties “like:”

• for each edge (i, j) ∈ E, vertex i and vertex j should be “close” in the embedding,

• for vertex pairs (i, j) /∈ E with a large number of edges on the shortest path between
vertex i and vertex j, the vertices should be “far” in the embedding, and

• the embedding “reveals” non-trivial information about the graph.

We indicate these terms with scare-quotes to emphasize that these are not (yet) rigorous
mathematical properties of the embeddings. Instead, these are subjective evaluation metrics
we can use to compare and contrast different embeddings of the same data.

If we restrict ourselves to a one-dimensional embedding and label all the vertices with
integers from 1 to n, we have a coordinate xi ∈ R

1 for each vertex i ∈ V . For convenience,
we use the vector x to represent the set of all coordinates. Throughout this paper and
in particular throughout this appendix, we will look at quadratic energy embeddings. A
quadratic energy embedding is a quadratic difference term over the edges of the graph.

In the quadratic energy formula, each edge e = (i, j) contributes “energy”

wij(xi − xj).

This term has the effect of pulling nodes connected with edges close because the minimum of
this term is when xi = xj. For the entire graph G, the quadratic “energy” of the embedding
is

UG(x) =
∑

(i,j)∈E

wij(xi − xj)
2. (7)

We call this function an “energy” because of the relationship with the energy of a mass-spring
system. Section ?? elaborates on this relationship.

An alternative graph embedding is to use a set of springs on the edges of the graph. For a
linear spring with constant k, the potential energy stored in the spring with scalar extension
x is

U(x) =
1

2
kx2.

In our case, we have kij = wij and x = (xi−xj). This expression is why we call our quadratic
energy embedding an “energy” embedding, if each edge is a spring, then we minimize the
total potential energy in the system given by UG(x).
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